Numerical analysis of a frictional contact problem for thermo-electro-elastic materials
نویسندگان
چکیده
منابع مشابه
Analysis and Numerical Approximation of an Elastic Frictional Contact Problem with Normal Compliance
In this paper we consider a problem of frictional contact between an elastic body and an obstacle. The elastic constitutive law is assumed to be nonlinear. The contact is modeled with normal compliance and the associated version of Coulomb's law of dry friction. We present two alternative yet equivalent weak formulations of the problem, and establish existence and uniqueness results for both fo...
متن کاملNumerical Analysis of a Frictionless Contact Problem for Elastic-Viscoplastic Materials
We consider a mathematical model which describes the unilateral quasistatic contact of two elastic-viscoplastic bodies. The contact is without friction and it is modeled by the classical Signorini boundary conditions. The model consists of an evolution equation coupled with a time-dependent variational inequality. It has been shown that the variational problem of the model has a unique solution...
متن کاملDynamic Frictional Contact for Elastic Viscoplastic Material
Using a general theory for evolution inclusions, existence and uniqueness theorems are obtained for weak solutions to a frictional dynamic contact problem for elastic visco-plastic material. An existence theorem in the case where the friction coefficient is discontinuous is also presented.
متن کاملNumerical Analysis of a Quasistatic Problem of Sliding Frictional Contact with Wear
We consider numerical approximations of a quasistatic problem modeling the sliding frictional contact with wear between a viscoelastic body and a rigid moving foundation. The contact is modeled with the Coulomb's law of dry friction and the wear is described by a version of Archard's law. The variational formulation of the problem consists of a nonlinear evolutionary equation coupled with a tim...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Theoretical and Applied Mechanics
سال: 2020
ISSN: 1429-2955,2543-6309
DOI: 10.15632/jtam-pl/122258